This complex structure make them almost impossible for chemists to design or synthesize, which is why we often turn to nature for their discovery.
Of the myriad of antibiotics that have come on the market over the last 60 years, 99% are derived from other microorganisms, primarily bacteria and fungi in the soil.
But this source of compounds is starting to run out and we must turn our attention to more exotic and extreme environments.
Caves are isolated environments, formed by water eroding rock over millions of years. In such isolation, without the input of sunlight or nutrients from the surface, microorganisms have had to adapt to a life of perpetual famine.
Through my work in caves, I have learnt that such microbes are so well adapted to starvation, that regular laboratory growth conditions are too rich.
With many of these microorganisms trapped in an unending search for food, they are unable to turn off their scavenging systems, and stuff themselves to the point of death.
Others are so adept at making a living from what little energy is available that they can survive by eating the plasticizers that leach out of plastics in our laboratory dishes.
Some cheat, learning to hunt down and prey upon other bacteria to obtain the resources they need to survive. Of the over 4,000 bacterial species we have grown from cave environments - 1,000 of which are new species - most behave unlike their surface counterparts.
No comments:
Post a Comment